MOTION OF LIQUID DROPS IN ONE-DIMENSIONAL GAS FLOW
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Formulas for calculating the velocity of liquid drops entrained by a
gas flow are obtained. These formulas can be used to analyze the
effect of dimensionless similarity criteria (Tg, Re, We, Kn, etc.) on
the velocity of the drops.

In deriving the equations of particle motion we as-
sume that 1) electrostatic and gravitational forces
acting on the particle are negligibly small in compar-
ison with the force due to the gas flow; 2) the particles
do not collide with one another; 3) massand heattrans-—
fer between the phases has no appreciable effect on
the motion of the particles. On the adoption of these
assumptions the equation of motion of an individual
particle of arbitrary shape entrained by a one-dimen-
sional gas flow can be written in the following form:
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Introducing the slip factor into Eq. (2) we obtain
the criterial equation of motion of the particle in its
final form:

—w)

_d~_\1 — (’V - Vvl) (sz
de v

. (3)

where
(4)
(5)

v = 2(1+ Ry T)(1+1/A):

vy = (1-+ v/ AY(—2R; Tg);

p=1lncy; A=1+ 4R, (1+ R, Ty).

An analysis of Eq. (3) shows that, in the case of
monotonic variation of ¢y in function z, vy (rys or vyy)
is the limiting value of the slip factor v, which it as~
sumes after completion of the relaxation of momentum
transfer between the particle and the gas.

With increase in z the value of the slip factor v
varies from the initial value vy to vyy (if?g is in the
range from +« to tp) or from vg to vy, (in the case of
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In the interval ty <Tg <ty the limiting value of v can-
not be attained physically owing to the finiteness of
the distance Az. If vy = vy, then the factor v over the
whole path of motion of the particle is constant in mag-
nitude and equal to vq. If vy ® vy the slip factor as-
ymptotically approaches vvyj as z increases. Depend-
ing on the ratio »¢/vvi the slip factor can either
decrease or increase with increase in z. From Eq.
(3) we obtain the following relationships for some self-
similar cases of motion of particles in a flow.

a) If Fg -0, and Ry and R, are independent of ¢
and v, then

v2+—g¥(c~1>( +1). (8)

When Syjg = 0 relationship (8) describes the motion of
particles in an ideal fluid.

b) If Tg = and Ry = 0, then from (8) we have

v =wy/e, for ¢, = (cj). 9)

In this case the vapor and liquid phases move indepen-
dently of one another without momentum transfer to
one another. This motion of particles in a viscous gas
can be called "minimum-equilibrium" motion.

c) It follows from the relaxation equation {3) that
& = |y — vyjlcharacterizes the degree of nonequilib-
rium of the momentum transfer between the phases.
The sign of v — vyi indicates the direction of thetrans-
fer process. If & = const, the motion of the two-phase
medium proceeds with a constant (kinematic) degree
of nonequilibrium. In the special case in which & =0
the motion of the two-phase medium is of an equilib-
rium nature (in the sense of absence of relaxation of
the slip factor v). If & =0, then

v = vy = v,; = const.

d) If &) =& =0 and Tg = 0, then if dey/dz is finite,
v = 1. In this case the motion of particles in a viscous
gas is "maximum-equilibrium™ motion, since there
is complete equalization of the velocities of the phases.
If &3 = 0, but Tg =0, the motion of particles in the
viscous phase will be of the maximum-equilibrium
type only when z > 0. In this case the function »(z) has



a discontinuity at the origin of coordinates.. The size
of the discontinuity in v is Av =11 — vgl. For any
boundary conditions the equalization of the velocities
of the phases in the last case terminates at the very
start of the z axis.

e) The factor v tends to unity in two special cases:
1) when the particles move in a gradient-free gas flow
{(dey/dz = 0) and 2) in the case of maximum-equilibrium
motion of the two~phase medium (Tg =0). In both
cases Tg = Tg (dey/dz) = 0 and, as follows from for-
mula (4), vyi = 1.

If Ry, Ry and 7, are independent of @ and v, then
Eq. (3) is converted to an equation with separable
variables and is easily integrated. The result of in-
tegration is given below.

1) If ty > Tg > tp (the whole region of confusor, gra-
dient-free, and partially diffusor flow of vapor), then

V. R v,
_ |:’V0—- Vvl]( vvl‘gvvz )l: Vo— sz:l( szv_zvvl )

V—vy

i

(10)

2]

v
V-V

2) If 7g =ty or 7g = tp (diffusor flow of vapor), then
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When Tg = ty, vyi =r, and when 7g = ty, Vvi =D
3) If ty < Tg < tp (diffusor flow of vapor), then
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4) For a gradient-free flow of gas Eq. (10) is con-
verted to the following form:

z=RT, [vo —v-+In
v—I1

Vo 1] (13)

In the more general cases of motion of particles in
gas flows Eq. (3) can be solved by one of the methods
of approximate integration. However, if high accuracy
is not required a first approximation of v can be ob-
tained in the following way. The interval T within
which the function cy is determined is divided into sev-
eral regions of length Az. It is assumed that within
each region Az the velocity cy varies according to a
linear law, that Tg, Ry, and R, are constants and equal
to the mean values in this interval:

oy =1+4(g,— 1)z (14)
where
Py = (Cv)l,(cv)ﬂ; %—g = Ty (Py — 1).

The factor v in the considered case can be calculated
from formulas (10)-(13).

As an example in Fig. 1 we have plotted v against
z and Tg for two boundary conditions: vy = 0 and vg = 2
with Ry = 1 and ¢y = 2. The figure shows the range of
variation of Ry within which the effect of "mass addi-
tion" on v does not exceed 1%. Figure 1 shows that
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Fig, 1. Slip factor v as a function of

coordinatez, and parameters Tg and

vofor py =2 and Ry =1: 1) nglos,

R, = 0; 2) 7g =10, R, =107%; 3) Tg =

1, Ry =103 1g =1, R, = 107% 4) 1¢ =
=0.1.

when 0 < y( < 2 the region of "relaxation of motion"
of the drop is practically confined to the range 10~ <
<Tg< 103,

Formulas (3)—(13) can be used for practical calcu-
lation of the factor v only in the case in which Ry, R,
and Tg are determined. For engineering calculation
of Tg it is more convenient to use the second form of
Tg given in the notation.

The factors kp, kg, and kg can be calculated by
means of the following relationships given in [1] for
the case of solid nondeformable particles:
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for laminar flow of the gas round the particle;
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for turbulent flow round the particle, where D¢ is the
hydraulic diameter of the cross section of the channel;

kg =(1—p)y; n=2.25—45. (17)

With sufficient accuracy we can assume that when Dg/
/D =10, kp =1, and when g = 0.01, kg = 1.

The data for calculation of kg in relation to Re and
coefficient k@ are given in the table.

If ¥" is calculated from Klyachko's formula [2], then
for 3 < Re < 400 we obtain
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From the data of [2]

» = 14 2B, Kn + 2B, Kn exp (—~ By j, (20)
2Kn |
where

By =0.7—0.9; By=0.2—03 By=1-3.

The movement of liquid particles entrained by a
flow of gas, as distinct from the movement of nonde-
formable particles, is accompanied by several addi-
tional processes, one of which is "pliability" of the
shape of the particle. If we use the relationship We =
= We (y) obtained by Klyachko [3] for the case of a drop
deformed into an oblate spheroid, we can obtain the
required relationship kg = kg (We) in the form given
in Fig. 2.

The relationship in Fig. 2 provides a means of de-
termining the nonsphericity factor kg for given con-
ditions of flow (We, Re) round the drop. From the
known Re and kG we use the formulas in the table to
calculate the dynamic form factor kg, which thus takes
into account the effect of pliability of the shape of the
liquid particle on the drag coefficient .

In the majority of cases encountered in practice
1> g/p. On this basis we can assume Ry = 1. If the
particle-has a simple geometric shape then s is de~
termined from the corresponding tables, which are
well known in the literature. (For a sphere, for in-
stance, si{ = 0.5; for a cylinder lying across the flow
si = 1.0, and so on). The calculation of syig and kg
entails considerable difficulties. Formulas suitable
for practical calculation have been obtained only for
the simplest forms of motion. For instance, in tn>
case of motion of a spherical particle in a gas oscil-
lating harmonically with angular frequency w, accord-
ing to the data of [2], we have

3 o1, . ka
ky= ) =3 Sy~ .
p 0Ty

The author of [2] thinks that if Re does not exceed a
few hundred, the factor ks can be neglected in the cal-
culation.

kG
14 /
Fig. 2. Form factor kg as a
1 function of We for initially
spherical drop of liquid.
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As was noted above, the slip factor v is calculated
from the average value of Tg in the interval Az, How-
ever, at the beginning of the calculation the velocity
of the liquid at z = 1 is unknown (and, hence, the av-
erage value of 7g in the interval Az is unknown). For
this reason (c7); and Tg are calculated by the method
of successive approximations.

NOTATION

c is the velocity; ¢ = ¢/(cy)g is the dimensionless
velocity; (c); is the velocity at end of region Az; D is
the diameter of the spherical drop, equal to charac-
teristic dimension L of particlie of arbitrary shape;
kg = (2/Qsph)V=idem is the geometric form factor
of particle; kp is the particle-motion restraint factor,
which allows for effect of channel walls on ¥; & = 4

/¥ sph Y Re=idem 18 the dynamic form factor of particle; kyr =

Kn=idem:

= Qn/Q is the particle area factor (for sphere kp =
= 0.25); kp = (¥"/9Ysph)D=idem is the factor which de-
pends on Knudsen number and allows for "slipping
effect” in boundary layer of particle; kgph = (" pg) is
the factor allowing for additional effect of Re on drag
coefficient of spherical particle (") at Re >0.1; ky
is the factor allowing for effect of acceleration on
dissipative force; k,g is the particle motion restraint

Relationships for Calculation of kg in Relation to kg and Re

kG Re kg
1-1.5 2.10% << Re < 2.108 kgzl2.4-—”T.é
G
' ‘ Re0.8
115 1.2 30 = 400 .78 + 1.13.Re?®
Re0.8
14215 45 = 300 T4 0.667 Re2B
‘ Re0.5
1152 1.2 130 2.45 + 0.409.Re2/3
‘ Re0.6
14=15 145 1.26 1 0.21.Re2/3_
1.021.5 =<l :
T ksph



factor allowing for effect of presence of neighboring
particles on 3; (kaB)2 =3"/; Kn =1/L is the Knudsen
number; L = 6V/Q is the characteristic dimension of
particle of arbitrary form; ! is the mean free path of
molecule of gaseous phase; Ry =1+ (s/p) and R, =

= (1 + s)/p are factors allowing for "mass-addition"
effect; Re =[lcy ~ cllpvl/uz is the Reynolds number;

s =8j T syig is the total mass addition factor; sj is
the mass addition factor in case of motion of particle
in ideal fluid; syig is the mass addition factor making
additional allowance for effect of viscosity of gas;
V is the volume of particle; We =[Dpy(cy ~ c1}?)/o
is the Weber number; z is the linear coordinate;
Az is the distance traversed by particle; Z = z/Az

is the dimensionless coordinate; 8 is the instant-
aneous volume concentration of liquid phase; vy is
the ratio of major semiaxis of oblate spheroid to ;
minor semiaxis; u is the dynamic viscosity; v = ¢j/cy
is the slip factor; p is the density; p = p7/pvy is the
density ratio; o is the surface tension of liquid; 7 is
the time; Ty =Tg (dey/dz ) is the generalized simi-
larity criterion of motion of particle of arbitrary
shape; Tg is the dimensionless structure-time cri-
terion of similarity of motion of particle of arbitrary
shape (generalized Stokes criterion) Tg = Lp (cy)o/
/8kM¥(1 + kg)Azicy — ¢l or Tg =7] [kp(kaB)z/
/4kMkgphkg(l + ka)); TL = 7L =[77(cv))/Az is the

dimensionless structure time criterion of similarity
of motion of spherical particle in case of Stokes mo-~
tion (Stokes number); 77 = [p7D*]/[18uy] is the time of
"relaxation of motion" of sphere in case of Stokes mo-
tion; ¥ is the drag coefficient of particle (variation of
dissipative force with acceleration neglected); ' is
the drag coefficient of single particle of arbitrary
shape in unconfined space; Pgph is the drag coefficient
of spherical particle at arbitrary Re and Kn; 3" is the
drag coefficient of sphere at arbitrary Re; s = 24/Re
is the drag coefficient of sphere in case of Stokes mo-
tion; Q is the surface area of particle; Qp is the area
of middle section of particle; Qsph is the surface area
of spherical particle. Subscripts: I denotes liquid
(solid) phase; 0 denotes parameter at z = 0; v denotes
vapor (gaseous) phase. :
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