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Formulas for calculating the velocity of liquid drops entrained by a 
gas flow are obtained, These formulas can be used to analyze the 
effect of dimensionless similarity criteria (7g, Re, We, Kn, etc. ) on 
the velocity of the drops. 

In deriving the equations of particle motion we as- 
sume that i) electrostatic and gravitational forces 

acting on the particle are negligibly small in compar- 
ison with the force due to the gas flow; 2) the particles 

do not collide with one another; 3)mass and heattrans- 
fer between the phases has no appreciable effect on 
the motion of the particles. On the adoption of these 

assumptions the equation of motion of an individual 
particle of arbitrary shape entrained by a one-dimen- 
sional gas flow can be written in the following form: 

dc l _ 3kM~(1 +ky)  dc v 
R1 d z  I L p  (Cv--Cl)2 + R ~ - d ~ c v .  (1) 

Wi th  a c c o u n t  f o r  the  r e l a t i o n s  d~'v = d z / c v  and  dT l = 
= d z / c  l , Eq.  (1) t a k e s  the  d i m e n s i o n l e s s  f o r m  

~1 ~l --C--v--Cl__ -~ ~2 CV do_ v- . (2) 
d-i  "~g c t c l d z  

I n t r o d u c i n g  the  s l i p  f a c t o r  in to  Eq.  (2) we o b t a i n  
the  c r i t e r i a l  e q u a t i o n  of m o t i o n  of the  p a r t i c l e  in i t s  
f i n a l  f o r m :  

d_~ = (v -- ~v~) (~ -- ~) (3) 

d~ 

w h e r e  

wv~ = 2 ( 1 +  R2 ~)/(1-~ V ~ ;  (4) 

~v2 = (1 + v~-) /(--2R~ #~); (5) 

An a n a l y s i s  of Eq.  (3) s h o w s  tha t ,  in  the  c a s e  of 
m o n o t o n i c  v a r i a t i o n  of c v in  f u n c t i o n  z_ Vvl (Vv1 o r  Vvz) 
i s  the  l i m i t i n g  v a l u e  of t he  s l ip  f a c t o r  v, w h i c h  i t  a s -  
s u m e s  a f t e r  c o m p l e t i o n  of the  r e l a x a t i o n  of m o m e n t u m  
t r a n s f e r  b e t w e e n  t he  p a r t i c l e  and  t he  g a s .  

Wi th  i n c r e a s e  in z t h e  v a l u e  of the  s l i p  f a c t o r  v 
v a r i e s  f r o m  the  i n i t i a l  v a l u e  v0 to Vvl (if-~g i s  in  the  
r a n g e  f r o m  +co to tp) o r  f r o m  v0 to Vv2 ( in the  c a s e  of 
t r  -> Tg > _oo). H e r e  

t~ = - - [ 1 / ( 2 R ~ p ) ] ;  p : 1 -~. ] / ' I - - ( R s / R r ) ,  (6) 

tr = - -  [1/ (2Rrr)];  r =  1 - - ~ / I - - ( R z / R ~ ) .  (7) 

In the  i n t e r v a l  t r  < ~g < tp the  l i m i t i n g  v a l u e  of v c a n -  
no t  b e  a t t a i n e d  p h y s i c a l l y  owing to the  f i n i t e n e s s  of 

the  d i s t a n c e  Az.  If v0 = Vvl, t hen  the  f a c t o r  v o v e r  the  
who le  p a t h  of m o t i o n  of t he  p a r t i c l e  i s  c o n s t a n t  i n m a g -  
n i t u d e  and  equa l  to v0. If v0 ~ Vvl the  s l i p  f a c t o r  a s -  
y m p t o t i c a l l y  a p p r o a c h e s  Vvi as  z i n c r e a s e s .  D e p e n d -  
ing  on  the  r a t i o  v o / v v i  t h e  s l i p  f a c t o r  c an  e i t h e r  
d e c r e a s e  o r  i n c r e a s e  wi th  i n c r e a s e  in z .  F r o m  Eq.  
(3) we o b t a i n  the  f o l l o w i n g  r e l a t i o n s h i p s  f o r  s o m e  s e l f -  
s i m i l a r  c a s e s  of m o t i o n  of p a r t i c l e s  in  a f low. 

a) If  ~-g ~ co, and  R1 and  R2 a r e  i n d e p e n d e n t  of ~g 
and  v, t hen  

1 
/ /  R~ - 1) (c  v + 1). (8) 

W h e n  Svi s = 0 r e I a t i o n s h i p  (8) d e s c r i b e s  the  m o t i o n  of 
p a r t i c l e s  in an  i d e a l  f lu id .  

b) If 1-g ~ :r and  R2 = 0, then  f r o m  (8) we h a v e  

v : . o / C  v f o r  c l : ( c i )  o. (9) 

In this case the vapor and liquid phases move indepen- 
dently of one another without momentum transfer to 

one another. This motion of particles in a viscous gas 
t? TT can be called minimum-equilibrium motion. 

c) It follows from the relaxation equation (3) that 

= Iv - Vvi I characterizes the degree of nonequilib- 
rium of the momentum transfer between the phases. 

The sign of v - Vvi indicates the direction of the trans- 
fer process. If �9 = const, the motion of the two-phase 
medium proceeds with a constant (kinematic) degree 

of nonequilibrium. In the special case in which �9 = 0 
the motion of the two-phase medium is of an equilib- 
rium nature (in the sense of absence of relaxation of 

t h e  s l i p  f a c t o r  v) .  If �9 -- 0, t hen  

= ~)o ~ ~ v l  = c o n s t .  

d) If ~o = ~  = 0  a n d T g  = 0 ,  then  if  d-cv/dz  is  f i n i t e ,  
v = i. In this case the motion of particles in a viscous 
gas is "maximum-equilibrium" motion, since there 
is complete equalization of the velocities of the phases. 
If r ~ 0, but ~-g = 0, the motion of particles in the 
viscous phase will be of the maximum-equilibrium 
type only when z> 0. In this case the function v(z-) has 

939 



a discontinui ty at the or igin of coo rd ina t e s .  The s ize 
of the discont inui ty  in v is Av = l l - v 0 1 .  For  any 
boundary conditions the equalizat ion of the veloci t ies  
of the phases in the las t  case t e rmina te s  at the very  
s t a r t  of the z axis. 

e) The factor  v tends to unity in two special  cases :  
1) when the par t i c les  move in a g rad ien t - f ree  gas flow 
(dcv/dz = 0) and 2) in the case of max imum-equ i l i b r i um 
motion of the two-phase medium (Tg = 0). In both 
c a s e s  ~g = ~'g (dcv/dz)  = 0 and, as follows f rom for -  
mula  (4), Vvi = 1. 

If H1, 1:{2 and ~-~ a re  independent of e and v, then 
Eq. (3) is converted to an equation with separable  
var iab les  and is eas i ly  integrated.  The r e su l t  of in-  
tegrat ion is given below. 

1) If t r > ~'g > tp (the whole region of coufusor, g ra -  
d ien t - f ree ,  and par t ia l ly  diffusor flow of vapor), then 

l ( )[ l ( C~--- [ u  "vl ~ u 2 ~ )  (10) 
L V--Vvt j L v--W2 j 

2) If $--g = t r or v--g = tp (diffusor flow of vapor), then 

;v %'vi ~0 ( ii) ! vW (v - -  Vo) / exp / -  (~, - ~ -Z ) (%-7  - ~ ) 7 '  
~vi - -  ~ 

When T-g = t r ,  Vvi = r,  and when T--g = tp, Vvi = p. 
3) If t r <~g  < tp (diffusor flow of vapor), then 

Cv: C R1u v - -  (1 + R2u X 

/ | ] V 2R,~'gv+l --arctg 2Rl#-gvo+l ]}.(12) x 

4) For  a g rad ien t - f ree  flow of gas Eq. (10) is con- 
ver ted to the following form:  

v0-- 11 (13) z-= R,'rg V o - - v + l n v _  1 j .  

In the more  genera l  cases of motion of par t ic les  in 
gas flows Eq. (3) can be solved by one of the methods 
of approximate integrat ion.  However, if high accuracy  
is not requ i red  a f i r s t  approximation of v can be ob- 
tained in the following way. The in terva l  T within 
which the function Cv is de te rmined  is divided into sev-  
era l  regions of length Az. It is assumed that within 
each region Az the velocity Cv var ies  according to a 
l inear  law, that rg,  R1, and R2 are  constants  and equal 
to the mean values in this in te rva l :  

c v : 1 + (~-- 1)~, (14) 

where 

~ ,  = (Cv)l;(Cv)0; ~-~ = ~ ( %  - 1). 

The factor v in the cons idered  case can be calculated 
f rom formulas  (10)-(13). 

As an example in Fig. 1 we have plotted v against  
z a n d  ~'g for two boundary condit ions:  v0 = 0 and v0 = 2 
with R1 = 1 and go v = 2. The figure shows the range  of 
var ia t ion  of R2 within which the effect of "mass  addi-  
tion" on v does not exceed 1%. F igure  1 shows that 
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Fig. 1. Slip factor  v as a function of 
coordinate '~,  and p a r a m e t e r s  Tg and 
v0for  ~v =2  andR1 = 1 : 1 ) r g _ 1 0  s , 
I h = 0; 2) ~-g = 10, R~_ -< 10"3; 3) rg ; 
1, R 2 --< 10-3; 1-g = 1, R 2 -< 10-3; 4) Tg = 

-<0.1. 
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when 0 _< v0 -< 2 the region of "relaxat ion of motion" 

of the drop is prac t ica l ly  confined to the range 10 -s < 
< ~-g < 10 3. 

Formulas (3)-(13) can be used for practical calcu- 
lation of the factor v only in the case in which HI, R2 
and ~'g are determined. For engineering calculation 
of Tg it is more convenient to use the second form of 
~'g given in the notation. 

The factors k D, kp, and kg can be calculated by 
means of the following relationships given in [1] for 
the case of solid nondeformable particles: 

for l amina r  flow of the gas round the par t ic le ;  

D kD= [1+2"1-~-r  ( 1 - - ~ ) ] ( 1 - -  D~)  2 (16) 

for turbulent  flow round the par t ic le ,  where Dc is the 
hydraul ic  d iamete r  of the c ross  sect ion of the channel; 

k~=(1--G) ' ;  n=2 .25 - -4 .5 .  (17) 

With sufficient accuracy  we can assume that when Dc/  
/D>_ 10, k D = I ,  and whenfi_< 0.01, kfi =1 .  

The data for calculat ion of kg in re la t ion  to Re and 
coefficient kG a re  given in the table.  

If r is calculated f rom Klyachko's formula  [2], then 
for 3 < Re < 400 we obtain 

ksph: 1 + --16 Re 2/3 ; (18) 

for Re --< i 

3 Re 19 
ksp ~ 1 q ~ -  - -  -1-2-~ (Re)~" (19) 
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F r o m  the data of [2] 

k v = ~ + 2 B ~ K n + 2 B ~ K n e x p ( _  2 ~ n )  , 

where 

(20) 

B1=0.7--0 .9;  B2=0.2--0 .3;  B3= 1--3. 

The movement  of liquid par t ic les  entra ined by a 
flow of gas, as dis t inct  f rom the movement  of nonde- 
formable  par t ic les ,  is accompanied by severa l  addi- 
t ional  p rocesses ,  one of which is "pliabil i ty" of the 
shape of the par t ic le .  If we use  the re la t ionship  We = 
= We (7) obtained by Klyachko [3] for the case of a drop 
deformed into an oblate spheroid, we can obtain the 
requ i red  re la t ionship  k G = k G (We) in the form given 
in Fig. 2. 

The re la t ionship  in Fig. 2 provides a means of de-  
t e rmin ing  the nonspher ie i ty  factor k G for given con-  
ditions of flow (We, Re) round the drop. F rom the 
known Re and kG we use  the formulas  in the table to 
calculate  the dynamic form factor  kg, which thus takes 
into account the effect of pl iabi l i ty of the shape of the 
liquid par t ic le  on the drag coefficient r 

In the majority of cases encountered in practice 

1 >> s/~. On this basis we can assume RI = i. If the 

particle-has a simple geometric shape then s is de- 

termined from the corresponding tables, which are 

well known in the literature. (For a sphere, for in- 

stance, si = 0.5; for a cylinder lying across the flow 

si = 1.0, and so on). The calculation of Svis and k a 

entails considerable difficulties. Formulas suitable 

for practical calculation have been obtained only for 

the simplest forms of motion. For instance, in t~ " 

case of motion of a spherical particle in a gas oscil- 

lating harmonically with angular frequency w, accord- 

ing to the data of [2], we have 

3 / O T I  ~a 

The author of [2] thinks that if Re does not exceed a 

few hundred, the factor ka can be neglected in the cal- 

culation. 

k G 

//r 

/,2 

! 

/ 
! 2 3 We 

Fig. 2. Form factor  kG as a 
function of We for ini t ia l ly  

spher ical  drop of liquid. 

As was noted above, the slip factor ~ is calculated 

from the average value of ~-g in the interval Az. How- 

ever, at the beginning of the calculation the velocity 

of the liquid at z = 1 is unknown (and, hence, the av- 

erage value of ~'g in the interval Az is unknown). For 

this reason (c/)t and rg are calculated by the method 

of successive approximations. 

NO TATION 

e is the velocity; c =  c/(cv)0 is the d imens ionless  
velocity;  (c)i is the velocity at end of region Az; D is 
the d iameter  of the spher ica l  drop, equal to charac -  
te r i s t i c  d imension L of par t ic le  of a r b i t r a r y  shape; 
kg = (~2A2sph)V=idem is the geometr ic  form factor  
of par t ic le ;  kD is the pa r t i c l e -mot ion  r e s t r a i n t  factor,  
which allows for effect of channel walls on r kg = ('~' 

/+ sph )Re=~aem is the dynamic form factor  of par t ic le  ; k M = 
Kn=idem, 

= ~ M / ~  is the par t ic le  a rea  factor (for sphere  k M = 
= 0.25); kp = (r is the factor which de- 
pends on Knudsen number  and allows for "slipping 
effect" in boundary layer  of par t ic le ;  ksph -- (r is 
the factor  allowing for additional effect of Re on drag 

coefficient of spher ica l  par t ic le  (r at Re > 0.1; k a 
is the factor  allowing for effect of accelera t ion  on 
diss ipat ive force;  k/3 is the par t ic le  motion r e s t r a i n t  

Relat ionships for Calculation of kg in Relation to k G and Re 

k G Re leg 

1 - 1 . 5  

1 , 1 5 -  1,2 

1 , 4  - 1 . 5  

1 . 1 5 -  1.2 

1 , 4 +  1,5 

1 , 0 _  1 . 5  

2.108 <: Re < 2.I0 ~ 

30 -?- 400 

45 - 300 

1 + 3 0  

1 - 4 5  

< 1  

11.4 
kg ~ 12.4-- kG 

ReO.8 

6.78 + 1,13. Re 2/3 

ReO,8 

4 -[- O. 667. Re2/3 

ReO.5 

2.45 T 0.409.Re2/3 

ReO-5 

1.26 -- 0.21 .Re2/3 

1 

ksph 
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factor  allowing for effect of p resence  of neighboring 
par t ic les  on r (kDkfi) 2 = r162  Kn = l / L  is the Knudsen 
number;  L = 6V/~ is the charac te r i s t i c  d imension of 
pa r t i c le  of a r b i t r a r y  form;  I is the mean f ree  path of 
molecule  of gaseous phase; R1 -- 1 + (s/~) and R2 = 
= (1 + s ) /p -a re  factors  allowing for "mass-addi t ion"  
effect; Re --[ lev - cl]Pv] /Pl  is the Reynolds number;  
s = si + Svis is  the total mass  addition factor;  si is 
the mass  addition factor  in case of motion of par t ic le  
in ideal fluid; Svis is the mass  addition factor  making 
additional allowance for effect of v iscos i ty  of gas; 
V is the volume of par t ic le ;  We = [Dpv(C v - c/)2]/(r 
is the Weber number ;  z is the l inear  coordinate;  
Az is the distance t r ave r sed  by particle;"g-= Z/AZ 
is the d imens ion less  coordinate;  fi is the ins tan t -  
aneous volume concentra t ion  of liquid phase;  "g is 
the ra t io  of major  semiaxis  of oblate spheroid to ; 
minor  semiaxis ;  tl is the dynamic viscosi ty;  v = c / / cv  
is the slip factor;  p is the density;  "p = P l / P v  is the 
density rat io;  a is the surface tension of liquid; ~" is 
the t ime; ~-g = "rg (dcv /dz )  is the genera l ized  s i m i -  
l a r i ty  c r i t e r ion  of motion of par t ic le  of a r b i t r a r y  
shape; ~-g is the d imens ionless  s t r uc tu r e - t ime  c r i -  
t e r ion  of s imi la r i ty  of motion of par t ic le  of a r b i t r a r y  
shape (general ized Stokes cr i te r ion)  ~-g = Lp(cv)0/  
/3kMr + ka)AZJC v - C l l  or  ~-g = ~ [kp(kDkfl)2/ 
/4kMksphkg(1 + ka)]; r L  = "r--L = [TI(Cv)o] /AZ is the 

d imens ion less  s t ruc tu re  t ime c r i t e r i on  of s imi l a r i ty  
of motion of spher ica l  par t ic le  in case of Stokes mo-  
t ion (Stokes number) ;  ~'l = [pID2]/[18t~v] is the t ime of 
"relaxat ion of motion" of sphere in case of Stokes mo-  
tion; r is the drag coefficient of par t ic le  (variat ion of 
diss ipat ive  force with accelera t ion  neglected); r is 
the drag coefficient of single par t ic le  of a r b i t r a ry  
shape in unconfined space; •sph is the drag coefficient 
of spher ica l  par t ic le  at a r b i t r a r y  Re and Kn; ~" is the 
drag coefficient of sphere at a r b i t r a r y  Re; Cs = 24/Re 
is the drag coefficient of sphere in case of Stokes mo-  
tion; f] is the surface a rea  of par t ic le ;  ~M is the a rea  
of middle section of par t ic le ;  ~sph is the surface a rea  
of spher ica l  par t ic le .  Subscr ip ts :  l denotes liquid 
(solid) phase; 0 denotes pa rame te r  at z =  0; v denotes 
vapor (gaseous) phase. 
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